186 research outputs found

    A Back-to-Basics Empirical Study of Priority Queues

    Full text link
    The theory community has proposed several new heap variants in the recent past which have remained largely untested experimentally. We take the field back to the drawing board, with straightforward implementations of both classic and novel structures using only standard, well-known optimizations. We study the behavior of each structure on a variety of inputs, including artificial workloads, workloads generated by running algorithms on real map data, and workloads from a discrete event simulator used in recent systems networking research. We provide observations about which characteristics are most correlated to performance. For example, we find that the L1 cache miss rate appears to be strongly correlated with wallclock time. We also provide observations about how the input sequence affects the relative performance of the different heap variants. For example, we show (both theoretically and in practice) that certain random insertion-deletion sequences are degenerate and can lead to misleading results. Overall, our findings suggest that while the conventional wisdom holds in some cases, it is sorely mistaken in others

    Hollow Heaps

    Full text link
    We introduce the hollow heap, a very simple data structure with the same amortized efficiency as the classical Fibonacci heap. All heap operations except delete and delete-min take O(1)O(1) time, worst case as well as amortized; delete and delete-min take O(logn)O(\log n) amortized time on a heap of nn items. Hollow heaps are by far the simplest structure to achieve this. Hollow heaps combine two novel ideas: the use of lazy deletion and re-insertion to do decrease-key operations, and the use of a dag (directed acyclic graph) instead of a tree or set of trees to represent a heap. Lazy deletion produces hollow nodes (nodes without items), giving the data structure its name.Comment: 27 pages, 7 figures, preliminary version appeared in ICALP 201

    Optimal resizable arrays

    Full text link
    A \emph{resizable array} is an array that can \emph{grow} and \emph{shrink} by the addition or removal of items from its end, or both its ends, while still supporting constant-time \emph{access} to each item stored in the array given its \emph{index}. Since the size of an array, i.e., the number of items in it, varies over time, space-efficient maintenance of a resizable array requires dynamic memory management. A standard doubling technique allows the maintenance of an array of size~NN using only O(N)O(N) space, with O(1)O(1) amortized time, or even O(1)O(1) worst-case time, per operation. Sitarski and Brodnik et al.\ describe much better solutions that maintain a resizable array of size~NN using only N+O(N)N+O(\sqrt{N}) space, still with O(1)O(1) time per operation. Brodnik et al.\ give a simple proof that this is best possible. We distinguish between the space needed for \emph{storing} a resizable array, and accessing its items, and the \emph{temporary} space that may be needed while growing or shrinking the array. For every integer r2r\ge 2, we show that N+O(N1/r)N+O(N^{1/r}) space is sufficient for storing and accessing an array of size~NN, if N+O(N11/r)N+O(N^{1-1/r}) space can be used briefly during grow and shrink operations. Accessing an item by index takes O(1)O(1) worst-case time while grow and shrink operations take O(r)O(r) amortized time. Using an exact analysis of a \emph{growth game}, we show that for any data structure from a wide class of data structures that uses only N+O(N1/r)N+O(N^{1/r}) space to store the array, the amortized cost of grow is Ω(r)\Omega(r), even if only grow and access operations are allowed. The time for grow and shrink operations cannot be made worst-case, unless r=2r=2.Comment: To appear in SOSA 202

    Simple Concurrent Labeling Algorithms for Connected Components

    Get PDF
    We present new concurrent labeling algorithms for finding connected components, and we study their theoretical efficiency. Even though many such algorithms have been proposed and many experiments with them have been done, our algorithms are simpler. We obtain an O(lg n) step bound for two of our algorithms using a novel multi-round analysis. We conjecture that our other algorithms also take O(lg n) steps but are only able to prove an O(lg^2 n) bound. We also point out some gaps in previous analyses of similar algorithms. Our results show that even a basic problem like connected components still has secrets to reveal
    corecore